首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

代数 >> 李代数
Questions in category: 李代数 (Lie algebra).

Ado 定理

Posted by haifeng on 2017-04-25 11:55:30 last update 2017-04-25 12:14:30 | Answers (0)


Ado 定理说的是

每个有限维李代数同构于一个矩阵李代数.

对于每个有限维矩阵李代数, 存在一个线性群(矩阵李群)以此为李代数. 因此, 每个抽象李代数都是某个线性李群的李代数.

 


一般的, 李群的整体结构(global structure)不是由其李代数决定的; 例如, 若 $Z$ 是李群 $G$ 的中心的任意一个离散子群, 则 $G$ 和 $G/Z$ 具有相同的李代数. (李群列表, 参见 https://en.wikipedia.org/wiki/Table_of_Lie_groups  , 典型群的李代数(问题1936))

一个连通李群是单的(simple), 半单的(semisimple), 可解的(solvable), 幂零的(nilpotent) 或交换的(abelian), 当且仅当其李代数具有相应的性质.

如果我们要求李群是单连通的(simply connected), 则它的整体结构可由其李代数决定: 对于域 $F$ 上的每个有限维李代数 $\mathfrak{g}$, 存在某个单连通李群 $G$ 以 $\mathfrak{g}$ 为其李代数, 且在同构意义下是唯一的. 并且, 李代数之间的同态可以唯一提升到相应的单连通李群之间的同态.

 


References:

https://en.wikipedia.org/wiki/Lie_group

https://en.wikipedia.org/wiki/Ado%27s_theorem

https://en.wikipedia.org/wiki/Table_of_Lie_groups